

A General Synthesis of Diaryl Cyclic Diamidines

Jarosław Spychała

Adam Mickiewicz University, Department of Chemistry, Grunwaldzka 6, 60-780 Poznań, Poland

Received 27 October 1998; accepted 9 February 1999

Abstract: A convenient and general method has been developed for directly converting bis-nitriles to cyclic diamidines using reagents derived from diaminoalkanes saturated with hydrogen sulfide. A 1:1 mixture of a diaminoalkane and ethyl alcohol (or without) was effective in most cases (72-88%). The synthetic utility of this methodology in the preparation of 1,3,6,8-tetrakis(cyclic amidino)pyrenes from 1,3,6,8-tetracyanopyrene is described. © 1999 Elsevier Science Ltd. All rights reserved.

In recent years a rapidly growing interest has been focused on diaryl diamidines due to their biological activities. Convenient methods currently available for diamidine synthesis involve the Pinner synthesis or direct salt-fusion reactions.1 A one-stage preparation of a cyclic diamidine by the direct reaction of a diaminoalkane with the parent bis-nitrile is a desirable transformation.

This work presents a convenient and general procedure for the direct conversion of aromatic bis-nitriles into the corresponding diaryl cyclic diamidines via reaction with an excess of diaminoalkane saturated with hydrogen sulfide. The diaminoalkane-H2S reagents may be generated by passing dry hydrogen sulfide through the reaction medium as needed, or prepared as stock solutions or suspensions which can be stored for longer time. The optimum formation of cyclic diamidines requires the use of high concentrations (1:1 mixture with ethanol or without any solvent) and heating under reflux. The yields obtained are generally high. Lower reagent concentrations resulted in significantly decreased yields and a small amount of monosubstitution product was obtained. 1a A general preparative procedure has been worked out with certain bisimidazolines 3 and the results are shown in Table 1.

Scheme 1. Mechanism.

$$R(CN)_{2}+2H_{2}S \xrightarrow{(1)} [R(CSNH_{2})_{2} \xrightarrow{(2)} R(CSNHCH_{2}CH_{2}NH_{2})_{2}] \xrightarrow{(3)} R(-1)_{2}+2H_{2}S$$

0040-4039/99/\$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(99)00307-X

The mechanism probably involves three known reactions: (1) base catalysed addition of H₂S to a cyano group, (2) nucleophilic substitution of the thiocarbamoyl amino group by the diamine with evolution of ammonia, (3) intramolecular cyclisation and removal of hydrogen sulfide leading to the formation of the cyclic diamidine as illustrated in Scheme 1.^{2,3}

Table 1. Diaryl Cyclic Diamidines.

Compound number	Product	Yield	HR MS, Calculated/Found (m/z)
3a	H_3C N CH_2O $2HCI$ N H CH_3 CH_3 N H CH_3	83	EI, M ⁺ , 348.19501/348.19544.
3b	·2HCl -CH ₂ O	88	EI, M ⁺ , 454.23688/454.23518.
3c	NH HN N -2HCl OCH ₂ -OCH ₂	77	FAB, [M+H] ⁺ , 503.24469/503.24014.
3d	H ₃ C CH ₃ N N N N N CH ₃ C -CH ₃ -2HCl N HN -CH ₃	75	EI, M ⁺ , 440.24368/440.24735.
3e	H H CH2C-N N-CH2-N H	84	EI, M , 402 2 ⁻ 320/402.25397.
H₃C 3f	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	80	EI, M ⁺ , 458.31580/458.31491.
3g H ₃ C	H ₂ C-N N-CH ₂ N-CH ₃	72	FAB, [M+H] ⁺ , 513.37054/513.36957.
1 NH	HCI HO	69	EI, M ⁺ , 255.11201/255.11140.

All melting points are uncorrected and higher than 300 °C with the exception of 3a (245-246 °C), 3b (255-256 °C), 4 (297-299 °C). The free base of 3b was dissolved in DMF and then acidified with HCl. TLC (CHCl₃: CH₃OH: 25% NH₄OH= 44:8:1, 11:4:1, or 7:5:2; v/v/v) showed one component. The spots on silica gel $60F_{254}$ glass plates were detected by UV absorption (254 nm) or visualised with iodine. The following bisnitriles were prepared by the known methods: 1a, 1b, 1c (m.p. 203 °C) by the standard Williamson ether synthesis⁴⁰⁻⁸, $1d^{4b}$; 1e (m.p. 207 °C), 1f (m.p. 184 °C), 1g (m.p. 209 °C) by a simple nucleophilic substitution of α -bromo-p-tolunitrile with the appropriate piperidine or piperazine compound. The products (3a, 3b, 3d, 3f, 3d, 3g) are mixtures of diastereoisomers.

In a typical experiment, bis-nitrile 1 (0.005 mol) in a 1:1 mixture of the diaminoalkane 2 and anhydrous ethanol (10 ml) saturated with dry hydrogen sulfide was boiled under reflux with stirring after which the substrate dissolved. After some time the mixture became semisolid owing to the separation of the free base. The reaction was practically complete after 18 hours. Most of these products were essentially pure and a little improvement in purity was effected by crystallization from methanol/2-propanol. The crude products were treated with aqueous HCl to obtain water soluble hydrochloride salts 3.5 Obviously, this method can be widely applied for the preparation of mono-amidines. N²-(4-Cyanophenyl)isocytosine was reacted under the conditions used to afford N²-[4-(2-imidazolinyl)phenyl]isocytosine (4) in 69 %.

Scheme 2. 1,3,6,8-Tetrakis(cyclic amidino)pyrenes.

Ethylenediamine (2a) or
$$R_1$$
 NH .4HCl HN R_1 (±)-1,2-diaminopropane (2b)-H₂S, N NH 6 HN R_1 reflux, then HCl R_1 a) R_1 = H (55%), b) R_1 = CH₃ (61%).

The applicability of the above method for the preparation of tetraamidines was also tested. 1,3,6,8-Tetracyanopyrene^{4j,k} (5, 0.005 mol) can be transformed to the corresponding 1,3,6,8-tetrakis(4,5-dihydro-1*H*-imidazol-2-yl)pyrene (6a) under similar conditions, however before heating, the reaction mixture was kept tightly stoppered for several days under ambient temperature without employing any solvent (in 20 ml of anhydrous H₂NCH₂CH₂NH₂ saturated with H₂S). The tetrahydrochlorides 6 6 were crystallized from methanol/2-propanol and recrystallized from methanol (see Scheme 2 for yields).

In summary, I belive that this method of synthesizing cyclic amidines is generally applicable and more advantageous than the methods used so far, especially in the synthesis of di-and more substituted derivatives.

REFERENCES AND NOTES

(a) Spychala, J.; Boykin, D.W.; Wilson, W.D.; Zhao, M.; Tidwell, R.R.; Dykstra, C.C.; Hall, J.E.; Jones, S.K.; Schinazi, R.F. Eur. J. Med. Chem. 1994, 29, 363. (b) McConnaughie, A.W.; Spychala, J.; Zhao, M.; Boykin, D.; Wilson, W.D. J. Med. Chem. 1994, 37, 1063. (c) Tanious, F.A.; Spychala, J.; Kumar, A.; Greene, K.; Boykin, D.W.; Wilson, W.D. J. Biomol. Struct. Dyn. 1994, 11, 1063. (d) Zhao, M.; Ratmeyer, L.; Peloquin, R.G.; Yao, S.; Kumar, A.; Spychala, J.; Boykin, D.W.; Wilson, W.D. Bioorg. Med. Chem. 1995, 3, 785. (e) Boykin, D.W.; Kumar, A.; Spychala, J.; Zhou, M.; Lombardy, R.J.; Wilson, W.D.; Dykstra, C.C.; Jones, S.K.; Hall, J.E.; Tidwell, R.R.; Laughton, C.; Nunn, C.M.; Neidle, S. J. Med. Chem. 1995, 38, 912. (f) Kumar, A.; Rhodes, R.A.; Spychala, J.; Wilson, W.D.; Boykin, D.W.; Tidwell, R.R.; Dykstra, C.C.; Hall, J.E.; Jones, S.K.; Schinazi, R.F. Eur. J. Med. Chem. 1995, 30, 99. (g) Patrick, D.A.; Boykin, D.W.; Wilson, W.D.; Tanious, F.A.; Spychala, J.; Bender, B.C.; Hall, J.E.; Dykstra, C.C.; Ohemeng, K.A.; Tidwell, R.R. Eur. J. Med. Chem. 1997,

- 32, 781. (h) Dykstra, C.C.; Tidwell, R.R.; Boykin, D.; Wilson, W.; Spychala, J.; Das, B.P.; Kumar, A. U.S. Patent 1998, 5,723,288; PCT Int. Appl. WO 95 30,901, Chem. Abstr. 1996, 124, 140390f.
- (a) Walter, W.; Voss, J. In The Chemistry of Amides; Zabicky, J.,Ed.; Interscience Publishers: London, 1970; p. 415. (b) Chabrier, P.; Renard, S.H. Bull. Soc. Chim. France 1949, D272. (c) Hurd, R.N.; DeLaMater, G. Chem. Rev. 1961, 61, 45. (d) Schaefer, F.C. In The Chemistry of the Cyano Group; Rappoport, Z., Ed.; Interscience Publishers: London, 1970, p. 274. (e) Wallach, O. Ann. 1891, 262, 324. (f) Forsell, G. Ber. 1892, 25, 2132. (g) Spychała, J. Synth. Commun. 1997, 27, 3431. (h) Kolaczkowska, E.; Włostowski, M.; Jaworski, T. Polish Patent 1988, 143,788, Chem. Abstr. 1990, 112, 35878a. (i) Hintermaier, H.; Poschner, U. German Patent 1992, 4,024,259, Chem. Abstr. 1992, 116, 194315p. (j) Dunn, P.J.: Amidines and N-Substituted Amidines. In Compr. Org. Funct. Group Transform.; Katritzky, A.R.; Meth-Cohn, O.; Rees, C.W., Eds.; Elsevier: Oxford, 1995; pp.741, 1161.
- 3. 2,4-Bis(4-cyanophenyl)-1,3,5-triazine¹a is resistant to cyclisation in reacting with 1,4-diaminobutane under similar conditions and affords the N-substituted thioamide: 2,4-bis{4-[N-(4-aminobutyl)thio-carbamoyl]phenyl}-1,3,5-triazine (m.p. 151-2 °C; anal. (C₂₅H₃₁N₇S₂) C, H, N; ¹H-NMR (DMSO-d₆), δ, 1.40-2.10 (m, 8H), 2.70 (m., 4H), 3.80 (m, 4H), 5.00 (br.s, 6H), 8.02 (d, 4H), 8.70 (d, 4H), 9.55 (s, 1H); ¹³C-NMR (DMSO-d₆), δ, 24.7, 30.3, 41.1, 46.3, 127 8, 128.2, 136.3, 145.1, 167.3, 169.9, 195.9; this product gave a positive reaction with 0.2 % ninhydrin ethanolic solution).
- (a) Spychała, J. Synth. Commun. 1997, 27, 1943. (b) Spychała, J. Synth. Commun. 1997, 27, 127. (c) Ashley, J.N.; Barber, H.J.; Evins, A.J.; Newbery, G.; Self, A.D.H. J. Chem. Soc. 1942, 103. (d) Hamano, S.; Kanazawa, T.; Kitamura, S. U.S. Patent 1977, 4,034,010, Chem. Abstr. 1977, 87, 134731u. (e) Wagner, G.; Horn, H. Pharmazie 1975, 30, 353. (f) Geratz, J. D.; Whitmore, A.C; Cheng, M.C.-F.; Piantadosi, C. J. Med. Chem. 1973, 16, 970. (g) Geratz, J. D.; Cheng, M.C.-F.; Tidwell, R.R. J. Med. Chem. 1975, 18, 477. (h) Cavallini, G.; Massarani, E. Farmaco Ed. Sci. 1953, 8, 503. (i) CIBA Ltd. Brit. Patent 1969, 1,173,244, Chem. Abstr. 1970, 72, 66827t. (j) Vollmann, H.; Becker, H.; Corell, M.; Streeck, H. Ann. 1937, 531, 1. (k) Ogino, K.; Iwashima, S.; Inokuchi, H.; Harada, Y. Bull. Chem. Soc. Jpn. 1965, 38, 473.
- 5. ¹³C-NMR (D₂O, (CH₃)₃Si(CH₂)₃SO₃Na) data are consistent with the structures assigned (**3a**: δ, 22.6, 53.8, 54.0, 56.0, 56.2, 71.7, 117.3, 118.4, 124.3, 130.6, 131.1, 133.0, 145.8, 165.4, 166.7, 167.2, **3b** (DMSO-d₆): δ, 20.5, 51.0, 53.0, 69.5, 114.7, 120.9, 121.2, 123.3, 128.0, 130.6, 136.2, 158.5, 163.2, **3c** (DMSO-d₆): δ, 44.4, 68.5, 115.3, 122.5, 127.3, 127.5, 128.1, 129.5, 132.7, 133.6, 138.6, 157.2, 164.7, **3d**: δ, 22.5, 38.1, 53.6, 56.0, 126.0, 130.0, 131.1, 143.3, 165.4, 166.0, 170.0, **3e**: δ, 47.4, 51.2, 62.3, 126.9, 131.7, 134.9, 136.9, 168.7, **3f**: δ, 16.6, 22.6, 54.2, 55.5, 56.4, 58.6, 59.5, 126.8, 131.7, 134.9, 137.3, 167.3, **3g**: δ, 22.5, 28.9, 39.5, 54.1, 55.4, 56.3, 62.4, 126.6, 131.5, 134.8, 137.8, 167.3).
- 6. 1,3,6,8-Tetrakis(4,5-dihydro-1*H*-imidazol-2-yl)pyrene (**6a**): m.p.> 300 °C; HR MS (FAB), [M+H]⁺, calc. 475.23587, found 475.23463; H-NMR (D₂O, DSS), δ, 4.63 (s, 16H), 8.96 (s, 2H), 9.07 (s, 4H); C-NMR (D₂O, DSS), δ, 48.7, 123.2, 126.7, 130.6, 130.7, 134.6, 168.7. 1,3,6,8-Tetrakis(4,5-dihydro-4-methyl-1*H*-imidazol-2-yl)pyrene (**6b**): m.p.> 300 °C; HR MS (FAB), [M+H]⁺, calc. 531.29846, found 531.30192; H-NMR (D₂O, DSS), δ, 1.77 (d, 12H), 4.11 (dd, 4H), 4.62 (t, 4H), 4.94-5.03 (m, 4H), 8.84 (s, 2H), 8.93 (s, 4H); C-NMR (D₂O, DSS), δ, 22.9, 55.0, 57.4, 122.9, 126.4, 130.2, 130.5, 134.3, 166.9. DSS: sodium 2,2-dimethyl-2-silapentane-5-sulfonate.